
ICS & MidWare coding style

THIS IS A WORK IN PROGRESS !

1. Keywords

All Delphi keywords are written in lower case except data types.

function Demo(const Value : String): String;

begin

 Result := 'This is my demo';

end;

2. Data types

Built-in data types are written in lower case except the first letter. See example above.

All new data types are created using concatenated words in lower case with each first

letter in uppercase with preceding letter ‘T’. If data type is a pointer to something then

first letter ‘T’ is replaced by ‘P’.

TMyOwnDataRecord = record

 Street : String;

 Value : Integer;

end;

PMyOwnDataRecord = ^TMyOwnDataRecord ;

3. Variable and function identifiers

Variables and functions identifiers are written using concatenated words in lower case

with each first letter in uppercase. The names shall be chosen to be as meaningful as

possible. Examples :

procedure PrintErrors;

function ReadLine : String;

function GetCharacter : Char;

var

 MaxCount : Integer;

 Global variables are prefixed with uppercase letter ‘G’:

var

 GClassCritSect : TRTLCriticalSection;

4. Constant identifiers

Constant identifiers shall be written in all upercase, with underline character to split the

identifier in more readable words.

const

 IP_MULTICAST_TTL = 3;

 IP_MULTICAST_LOOP = 4;

 IP_ADD_MEMBERSHIP = 5;

Typed constant which are in fact initialized variables follow variable indentifier rule. Old

Delphi compiler didn’t liked intialized variables, so they where declared with the const

keyword and needed the compiler option {$J+} to allow typed constant to be modified.

const

 MyVariable : Integer = 123;

When a typed constant is really a global variable, it must be prefixed with uppercase letter

‘G’.

Constants which are much like enul can also follow the same rule (see below).
const

 httperrNoError = 0;

 httperrBusy = 1;

 httperrNoData = 2;

 httperrAborted = 3;

5. Enum identifiers

Enum identifiers will begin with a prefix in lower case being 2 to 4 letters of the words

describing the enum datatype. After the prefix, the identifier follow the rules for variables.
type

 THttpEncoding = (encUUEncode, encBase64, encMime);

6. Properties

Properties names follow variable names convention. If the property is mapped to a

variable, the variable name is the same as the property name with uppercase ‘F’ as prefix.

If property is mapped with accessor functions, the their names begin with « Get » or

« Set ».
private

 FValue : Integer;

 function GetLine : String;

 procedure SetLine(const Value : String);

published

 property Value : Integer read FValue write FValue;

 property Line : String read GetLine write SetLine;

end;

7. Events

Same as properties except the « On » prefix is added.

private

 FOnModify : TNotifyEvent;

published

 property OnModify : TNotifyEvent read FOnModify

 write FOnModify;

end;

8. Indentations, tabs and spaces

Indentation is by 4 spaces. Do not use tab character, always insert spaces characters so

that the code is displayed the same way whatever the tab settings are.

9. Alignments

Align everything as much, using spaces. Align in variables, records and classes

declarations, align in assignment. See how alignments are done in the properties example

above : there is an extra space between « function » and « GetLine » so that « GetLine » is

aligned with « SetLine » on the next line. See also how the colon are aligned in the

properties section. Same alignment for « read » and « write » keywords.

Argument have their colon aligned :

function TCustomSyncWSocket.Synchronize(

 Proc : TWSocketSyncNextProc;

 var DoneFlag : Boolean) : Integer;

begin

 DoneFlag := FALSE;

 if Assigned(Proc) then

 Proc;

 Result := WaitUntilReady(DoneFlag);

end;

10. Comments

Since most ICS components are for all Delphi version, including Delphi 1, only old style

comment are allowed. Midware and some ICS component are for later Delphi so new

comment style are allowed.

Whenever possible, alignement have to be respected not only at the left but also at the

right margin.

Comments describing function behaviour has to be put before the function itself.

Comments within the function body is aligne with code and is placed before the code if

the comment apply to several lines, or is too long to fit at the right of the code.

Each function is preceded by a comment line made of 38 asterisk and spaces. At the end

of the function there are exactly two blank laines before the next function.

{* *}

{ This comment describe the function behaviour. You should include anythin }

{ useful to explain what the function does, and what it returns. }

function ThisIsMyFunction(

 Value : Integer; { This describe the argument }

 const Street : String; { Yet another argument description }

 LastArg : Byte) : Integer; { Here the last argument described }

var

 I : Integer;

 Buffer : String;

begin

 { This comment applies to the next fex lines. }

 SetLength(Buffer, 20); { Allocate string space }

 for I := 1 to Length(Buffer) do

 Buffer[I] := Char(Ord('A') + I); { Fill buffer with some data }

 { New code block with his own comment. }

 DoSomething; { Another comment for this line }

 Result := 3;

end;

{* *}

Note in the above example that all other rules are also respected. Take special care to

alignement of everything. Of course it is not always possible to align everything because

the lack of space. Do your best to preserve as much alignments as possible, breaking the

less rules as possible.

11. Begin/End keywords

Begin is always at the end of line, end keyword is always aligned with the if, while, for

which has the matching begin.

if Value = DefaultValue then begin

 DoSomething;

 DoAnotherThing;

end

else begin

 I := 20;

 Value := I;

end;

for I := 1 to 10 do begin

 DoSomething;

 DoAnotherThing;

end;

while I < 10 do begin

 DoSomething;

 Inc(I);

end;

12. Comma, semi-colon, parenthesis, bracket

Function arguments are separated by comma when calling the function. Put a space after

the comma but none before. Same with the semi-colon in the function declaration.

The semi-colon which ends a code line has no preceding space.

An open parenthesis is never preceded nor followed by a space. Same for brecket in array

indexing.

13. Conditional expressions

Conditional expression do not use leading and ending parenthesis. When the expression is

made of several subexpressions, parenthesis are used around each part. A space is used

before and after each operator. No space after opening parenthesis nor before closing

parenthesis:

 while (I <= Length(Str)) and (Str[I] = ' ') do

 Inc(I);

When a condition is too long to fit on a single line, it is split on several lines. The boolean

operator is left at the end of the line and the opening parenthesis are aligned:

 if (FAuthNTLMState = ntlmMsg3) and

 (FStatusCode <> 401) and (FStatusCode <> 407) then

 FAuthNTLMState := ntlmDone

14. Line break

Always use at most 80 characters lines. You are helped with the margin Delphi editor can

display for you. Turn on margin display and set it to 80 characters (this is the default

anyway).

Long lines will be continuated at the next line, preserving alignment as much as possible.

When breaking a line in two parts, adjust the left margin so that it makes a “logical”

alignment with the line above.

When a function has too much arguments to fit on a single line, the opening parenthesis is

where to break the line. Then each argument is listed one by line. Always align inside

argument declaration.

function ThisIsMyFunction(

 Value : Integer; { This describe the argument }

 const Street : String; { Yet another argument description }

 LastArg : Byte) : Integer; { Here the last argument described }

15. Conditional compilation

Conditional compilation directives start at the left margin when possible.

begin

{$IFNDEF NO_DEBUG_LOG}

 if CheckLogOptions(loProtSpecInfo)

 DebugLog(loProtSpecInfo, 'RequestDone');

{$ENDIF}

 if Assigned(FOnRequestDone) then

 FOnRequestDone(Self, FRequestType, FRequestDoneError);

end;

Identation is not affected by the conditional compilation.

Sometimes conditional compilation apply to only part of a statement. In that case, it is

allowed to put the directives in line with the statement:

procedure MyOwnProc); {$IFNDEF BCB} virtual; {$ENDIF}

16. try/finally and try/except

Try, finally and related end are all aligned. Indent by four spaces between try and finally

and between finally and end. Same for try/except.

 EnterCriticalSection(GWSockCritSect);

 try

 if WSocketGCount <= 0 then

 WSocketUnregisterClass;

 finally

 LeaveCriticalSection(GWSockCritSect);

 end;

 try

 DoSomething;

 except

 on E:Exception do begin

 Display(E.ClassName + ': ' + E.Message);

 DoSomethingElse;

 end;

 end;

